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The main result in this paper is the characterization of all #»-dimensional weak
Chebyshev Z subspaces of C(Q) for which the metric projection has a continuous
selection. It is also shown that if n >3 and P, has a continuous selection, then Q
should be homeomorphic to a subset of R.  © 1991 Academic Press, Inc.

1. INTRODUCTION

The closed subset 4 of the normed linear space X is said to be
proximinal in X, if for each x € X there is y € 4 such that d(x, 4) = || x— y||,
where d(x, 4) is the distance from x to 4; that is,

d(x, A)=inf{|lx — y[; ye ).

For the proximinal set 4 in X, the set-valued function P, : X — 24 defined
by P, (x)={yed;|x—y|=d(x, A)} is called the metric projection from
X onto A, and if there is a continuous function f: X — A4 such that
f(x)e P (x) for each xe X, then f is called a continuous selection for the
metric projection P .

“Q is a totally ordered space” means that Q is a totally ordered set and
the topology defined on it is the order topology. If Q is a locally compact
totally ordered space, then Co(Q) is the Banach space of all continuous
real-valued functions defined on Q and “vanishing at infinity”; that is, if
feCo(Q), then for all 6> 0, the set {ge Q;|f(q)| >¢} is compact. If Q is
compact then Cy(Q) is denoted C(Q). The norm defined on C,(Q) and
C(Q) is the uniform norm; that is, || £ =sup{[/f(¢)|; g€ Q}. The subspace
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N of Cy(Q) is called a Z-subspace if no g # 0 in N vanishes on a nonempty
open subset of Q. Any subset of the real numbers is totally ordered, and
any proper subset of the circle is totally ordered. Another very important
totally ordered space is the “interval with split points” (for definition see
Brown [1,27; also see Example 4.11 in this paper). Totally ordered spaces
have a very strong relation with the existence of a continuous selection for
the metric projection. Brown [1] proved that if ¢ is any compact
Hausdorff space and C(Q) contains a finite dimensional Z-subspace N of
dimension at least two such that the metric projection P, has a continuous
selection, then either Q is homeomorphic to a subset of the circle or § is
homeomorphic to a subset of an interval with split points.

If Q is a locally compact totally ordered space, then the n-dimensional
subspace N of Cy(Q) is called a Chebyshev subspace if each g0 in N has
no more than (n—1) zeros. N is called a weak Chebyshev subspace if for
each basis {g;, g5, .. &, of N, x;<x,<---<x, in Q, and y, <
V< <y,inQ,

det[gi(xj)] 'det[gi(yj‘)] =0.

Jones and Karlovitz [4], Deutsch, Nurnberger, and Singer [3], and
Kamal [5] studied other equivalent properties of the weak Chebyshev
subspaces. One of these properties is the following:

For each fe Cy(Q) there is ge N such that | f — g| =d(f, N) and (f — g}
equioscillates at (n+ 1) points of Q; that is, there are x, <x,< .-+ <x, .,
in Q and ¢= +1, such that

(-1 (f—9x)=¢llf—gl, for i=1,2,..,n+1.

This property is related to the existence of a continuous selection for the
metric projection Pu: Co(Q)—2". This relation can be seen in the
following theorem:

1.1. THEOREM. Let @ be a locally compact totally ordered space, let N be
an n-dimensional subspace of Ci(Q), and let Py be the metric projection
from Co(Q) onto N. If for each fe Cy(Q) there is a unique gre Puy(f) such
that (f — g) equioscillates at (n+ 1) points, then the mapping : Co(Q) = N
defined by i(f)= g, is a continuous selection for the metric projection P .

The proof of this theorem is easy and can be obtained from the proof of
the special case when Q is a compact real interval; that was done by
Nurnberger and Sommer [8].

1.2. DEFNITION. Let Q be a locally compact totally ordered space,
let N be an n-dimensional subspace of C,(2), and let P, be the metric
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projection from Cy(Q) onto N. The subspace N may or may not possess
one of the following properties:

awc,: Each g#0 in N has at most » distinct zeros

awc,: For each fe Cy(Q) there is a unique ge Py(f), such that
(f — g) equioscillates at (n+ 1) points.

By Theorem 1.1, if N has the property awc, then the metric projection
P,, has a continuous selection. In the case when N is a weak Chebyshev
subspace, each f e Cy(Q) has at least one ge Py(f) such that (f— g) equi-
oscillates at (r+ 1) points of Q, so in order to show that the metric projec-
tion Py from Cy(Q) onto the n-dimensional weak Chebyshev subspace N
of Co(Q) has a continuous selection, it is enough to show that, for each
fe Cy(Q), there is at most one g € Py(f) such that (f — g) equioscillates at
(n+ 1) points. Using the properties of the real intervals, Nurnberger and
Sommer [8] proved that the properties awc; and awc, are equivalent for
any n-dimensional weak Chebyshev subspace N of C[a, b], where [a, ] is
a compact real interval. Nurnberger [6] obtained the same result for any
n-dimensional weak Chebyshev subspace of Cy(Q), where Q is any locally
compact subset of the real numbers. However, his proof is very difficult and
depends very strongly on the properties of the real numbers, so it cannot
be generalized any more.

In this paper the author studies the property awc, and its relation with
the existence of a continuous selection for the metric projection in the
general case when Q is any locally compact (resp. compact) totally ordered
space. In Section 2, the author studies the properties of the order topology
on O that are related to the existence of the property awc, in some
n-dimensional weak Chebyshev subspaces of Co(Q). These properties are
not algebraic, and they are satisfied by some spaces that are not
homeomorphic to subsets of the real numbers. In Section 3, the author
uses some of these properties to prove that the properties awc, and awc,
are equivalent on any n-dimensional weak Chebyshev subspace of Co(Q),
where Q is any locally compact totally ordered space. The proof is very
simple and natural. Combining this result with some other results, it is
shown that if N is a finite-dimensional weak Chebyshev Z-subspace of
C(Q), then the metric projection P, has a continuous selection if and only
if N has the property awc,. This result gives a full characterization for
those finite-dimensional weak Chebyshev Z-subspaces of C(Q) for which
the metric projection P, has a continuous selection.

The natural question that one may ask is whether the property awc, is
satisfied by some n-dimensional weak Chebyshev subspaces of C(Q), when
Q is not homeomorphic to any subset of the real numbers. The answer is
an extension to Mairhuber’s theorem. Mairhuber’s theorem asserts that if
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there is a Chebyshev subspace of C(Q) of finite dimension not less than
two, then Q is homeomorphic to a subset of the circle. The proof of
Mairhuber’s theorem can be found in Singer [10]. In Section 4, it is
shown that if Q is a compact totally ordered space, C(Q) contains an
n-dimensional weak Chebyshev subspace that has the property awc,, and
n>=3, then Q is homeomorphic to a subset of R In the case when
dim N =2, an example will be given to show that this result fails. However,
if dim N =2 and there is x,€ Q such that g(x,)=0 for each ge N, then the
result holds. Combining this result with other results from Section 3, it is
shown also that if Q is a compact totally ordered space and C(Q) contains
a finite-dimensional weak Chebyshev Z-subspace of dimension not less
than three, and the metric projection P, has a continuous selection, then
Q is homeomorphic to a subset of R. In the case when the dimension of
this subspace is 2, an example will given to show that this result fails.

The rest of this section will cover some definitions and known results
that will be used later in this paper. In this paper “Q is a totally ordered
space” means that Q is a totally ordered set with the order topology
defined on it. The intervals [x, y], (x, y) in Q and the terminologies — oo
and + oo have their ordinary meaning. If @ is a locally compact totally
ordered space, then fe Co(Q) is said to “oscillate weakly” (resp. “oscillate”)
at &k points of @ if there are x; <x,< --- <x, in Q and &= +1 such that
(—1Yef(x;)=0 (resp. (—1)'ef(x,)>0) for all i=1,2,.., k. fis said to
“equioscillate” at £ points of Q if there are x, <x,< --- <x, in 0, and
g= 41 such that (—1)Y f(x,)=¢|f] for all i=1,2,.,k If ¥ is an
n-dimensional subspace of Q, then the points x,, x,, .., x, are said to be
“N-independent” if the linear functionals %,, £,, ..., £, defined by £,{g)=
g(x,) are linearly independent in N*, the dual space of N.

The proof of the following lemma is elementary:

1.3. LemMMA.  Let Q be a locally compact Hausdorff space, and let N be
an n-dimensional subspace of Co(Q). The points x,, x4, ..., X, K<n in Q are
N-independent if and only if for each a,,a,, .., u, in R (the set of real
numbers), there is g e N such that g(x;)=«; for each i=1,2, ..., k.

1.4. DEFINITION. - Let Q and N be as in Lemma 1.3. The distinct points
Xy, X3, ..y X in @ are called “N-totally dependent” if there are 4., 4,, ..., 4,
in R with 4,0 for each i, such that 3"%_, 1,£,=0, where %, is the linear
functional in N* defined by x,.

An N-totally dependent subset {x,, x5, ..., x;} of O need not be a “mini-
mal dependent” subset of Q with respect to N, but in Section 2, it will be
shown that if N has the property awc,, and 1 <k <n, then any N-totally
dependent subset {x,, x5,..,x,} of O is a minimal dependent subset
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with respect to N. Obviously each N-dependent subset of Q contains a
nonempty N-totally dependent subset.

1.5. TueoreM (Kamal [5]). Let Q be a locally compact totally ordered
space that contains at least (n+ 1) points, and let N be an n-dimensional
subspace of Co(Q). Then the following properties are equivalent:

wc,: FEach g#0 in N has at most (n— 1) changes of sign; that is, no
g in N oscillates at (n+ 1) points or more in Q.

we,: N is a weak Chebyshev subspace of Cy(Q).

wcy: Foreach x, <x,< --- <Xx,_,inQ, there is g#0 in N such that
glx;)=0fori=1,2,..,n—1, and

(_l)ig(x)>0f0rxe(xi’xi+l)) fOV i=1325'"5n_15

where xo= —o0 and x, = +00.

wc,: For each fe Cy(Q) there is ge N such that | f— g| =d(f, N),
and (f — g) equioscillates at (n+ 1) points in Q.

2. THE PROPERTY awcC;

In this section some simple results will be obtained to clarify the relation
between the property awc, and the order topology on Q. These results will
be used in Section 3 and Section 4 to obtain the main results.

2.1. LemMmA. Let Q be a locally compact Hausdorff space, let N be an
n-dimensional subspace of Cy(Q) that has the property awc,, and let
{x1, X2, o X}, 1 <k<n, be an N-totally dependent subset of Q. Then for
each Yy 1y s Yiewr i O\{X1, o, Xi}, where k<k +1<n+1, and each i,e
{1,2, .., k} the points

Xy eens xi(]—l’ xig+19 s Xioo Vet 15 00 Ve
are N-independent.

Proof. Tf Q consists of exactly n elements then the proof is obvious. So
without loss of generality one might assume that Q contains at least n+ 1
elements, and k+i1=n+1.

The set {x,, x5, .., Xz} is N-totally dependent, so there are 1, ..., 4
Ay i1s e A in R with 4,50 for each i, such that

ip— 12

k

glx;) = Z A 8(x;) foreach geN.
i=1
i#i
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Let {Xy, o Xig 15 Xigr 15 s Xks Vit 1o s Va1 = (215 Z2y ooy Z,), and
assume that the points z, z,, .., z, are N-dependent. Then there are jye
{1,2,.,n}and py, iy, o 15 Hjg 4 15 - Uy 0 R such that

glzj)= Y m;g(z;) foreach geN.
i

Since dim N =n, it follows that there is g0 in N, such that g(s)=0 for
each se{zy, ..z, 1,2j41,2,). But then g(z;)=0 and therefore
g{x,)=0, so g has more than » zeros in 0, which contradicts the fact that

N has the property awc;.

2.2. CorOLLARY. Let Q, N, and {xi, .., x,} be as in Lemma 2.1. Then
any proper nonempty subset of {xi, .., x,} is N-independent.
In Theorem 2.3, the notation “x=Y%_, 1,x,” means that

k
g(x)=Y A;g(x;)  foreach geN.
i=1

If {815 8u} is a basis for N, and x,, X5, ..., x, are in Q, then det[ g;(x,)]
will be denoted by |x,, x,, .., x,|; that is,

gilx1) gilxy) - gilx,)
_ g2x1) gaAx2) - galx,)

Xis Xgy oy Xp| = : : : .
gn(.xl) gn(XZ) e gn<xn)

2.3. THEOREM. Let Q be a locally compact totally ordered space, let N be
an n-dimensional weak Chebyshev subspace of Co(Q) that has the property
awcey, and X; <X, < --- <Xy, 1 <k <n, be an N-totally dependent subset of
Q. If Q contains at least n+ 2 points, then either [x,, x,]={xy, X3, ., Xz }
or there is iy in {1,2, .., k—1} such that Q\(x;, x;, )= {X;, X5, . X1 }.

Proof. If k=1 then there is nothing to prove, so one can assume that
k=2 and that [x;, x;,] # {x;, X5, ..., X; }. It will be shown that there is i, €
{1,2, .., k—1} such that O\(x,, x;, 1) = {x1, X3, 0, X}

Since [x;, x,] # {x{, x5, ., x;} it follows that there is i, in
{L,2, .., k—1} such that the open interval (x,, x, , ) is not empty. It will
be shown that Q\(x,, x; 1) = {x;, X5, ..., X, }; that is, the set

A={xeQ;x<x 0t x=x, . J\{X1, X5, ooy Xp }

is empty.
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Assume not, and let y,€ A. Since (x;, x;. 1) # &, let xo€ (x,, X4 1)-
Either yo > x;, 1 Or yo < x;,. The proof will be given for the case when y,>
X;,4 15 the proof for the other case is similar.

Since {x,, x5, .., X} is N-totally dependent, there are nonzero real
numbers A, A, .., Aj_ 1, A1 25 -r Ag such that

Xip+1= = ix, 0T Z Aix; (*)
i=1
i {io, i+ 1}
Let f, <1,< --- <t, be a subset of Q satisfying the following properties:

(a) {xla X5 eens xi0~19 X0, xi0+1: ey xk} & {t19 t29 aaey tn}:
(b) x,¢ {1, 1y, t,} and yo it {1y, s, .., 1, ).

This can be done because k£ <n and Q contains at least (rn + 2) points. By
defining to= —o0 and ¢,, ; = +o0, one can find j, in {1,2,..,n+ 1} such
that x, e(tjo,l, t,). Also there is m>1 such that x, . ,=¢,. Let z; <

z,< --- <z, be the set obtained from the set {f,, 7,, .., ¢,} by replacing x,
by y,. Then since x; <xo<x,,; and y,>x,,,, it follows that x,-oe‘
(zjp—1,2;,) and x;,,=2z, ;. By Lemma 2.1 the points ¢,,..¢, are
N-independent, and the points z,,..,z, are N-independent. Thus if

{g1, g2, - g,} is any basis for N, it follows that
[t1, ny wr b, #0 and |Z15 23y s Z,] #O.
But N is a weak Chebyshev subspace of Cy(Q), so

|t15 t29 =eny tma ety tnl ) |219 225 Zm—15 '"7: an >0.

By (*),
215 cous Ly 1 Ligs oos Epms o Bl
_l|t1a~ * jo—l’t]())"‘? tm~19xi0,tm+15'"5 tnl
— m—jo
/1(_1) Itly sees ]0—19 Xigs tjo’ s by 15 tm+1: B tnl'
Also
lzl’ oees Z'o—la Zjo, vy Zgp— 15 09 Zy
_ilzb'" jo—l’ZJOD"" Zm725xio7zm5-"9 Zn
m—jo—1
== 1)" 0T 2y ey Zig s Xigs Zjgs wees Zon— 25 Zoms wees Zpl-
Thus
— A%t ! X, 1 t { 1,
1o =2 bjo—15 Nigs Pjgs s tm— 1> *m+ 15 = tn

Ziy e Zym— 25 Zims woer 2| > 0.

NZgy s Zig 15 Xigs Zjs

g
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But £, <6< - < 1 <X << oo <y, 2y <2< <z <X <
z,< --- <z,, and N is a weak Chebyshev subspace. Therefore

|t19 ey ljofla xioa tjoa eery tmfla tm+ls seey tnl

Jzyy ez

jo— 12 Xigs £

Jor ot ZmA27 Zm: stey an 20

in?
so —A%?>0, which is a contradiction.

The following lemma will be used frequently in Section 3.

24. LemMA. Let Q be a locally compact totally ordered space, let N be
an n-dimensional subspace of Co(Q), and let x| <x,< --- <x,., be {(n+ 1)
points of Q. Assume that there is g#0 in N such that g oscillates weakly at
the points X, Xy, ., X, 1. Let {x,,x,,..,x,} be the set of all points in
{X1, s Xy 41 at which g =0. If the set {x,, ..., x, } is empty or N-independent,
then N is not a weak Chebyshev subspace of Co(Q).

Proof. 1If the set {x,, .., x; } is empty, then g oscillates at (n + 1) points
of Q. By Theorem 1.5, N is not a weak Chebyshev subspace of C(Q). Now
assume that the set {x,, .., x, } is a nonempty N-independent subset of 0.
Then 1<k <n. Since g oscillates weakly at x, <x,< --- <x,,;, one may
assume that

(—1) g(x;)=0 for i=1,2,..,n+1.

Let 1 = smin{|g(x)|; g(x;) # 0, i =1,2,.,m + 1}. Then 1 > 0. By
Lemma 1.3, there is g’ in N such that

glx)=(—1)F for j=1,2, ..k

Let i=g+ A(g'/Ilg’]l)- Then ~e N and h oscillates at x; <x,< --- <x,, .
Thus by Theorem 1.5, N is not a weak Chebyshev subspace.

3. THE EQUIVALENCE BETWEEN awc; AND awc,

In this section it is shown that if Q is a locally compact totally ordered
space, and N is an n-dimensional weak Chebyshev subspace of Co(Q), then
N has the property awc, if and only if it has the property awc,. Therefore,
by Theorem 1.1, if the weak Chebyshev subspace N has the property awc,,
it follows that the metric projection P, has a continuous selection. Com-
bining this result with a result of Brown [1], it is shown also that if the
n-dimensional weak Chebyshev subspace N is a Z-subspace, then P, has
a continuous selection if and only if N has the property awc,.

640/67/2-3
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3.1. THEOREM. Let Q be a locally compact totally ordered space that
contains at least (n+ 1) points, and let N be an n-dimensional weak
Chebyshev subspace of Co(Q). If N has the property awc,, then it has the
property awc,.

Proof. Let feCy(Q). By Theorem 1.5, there is ge N such that
d(f, N)=|f~gll, and (f— g) equioscillates at (n+ 1) points. It will be
shown that g is unique.

If fe N then there is nothing to prove. So assume that f'¢ N, and that
there is another g’ in N such that d(f, N)=|f—g’'l, and (f— g') equi-
oscillates at (n+ 1) points. Without loss of generality one may assume that
g#0and g'=0.

Since (f — g) and f equioscillate at (»+ 1) points, it follows that there
are X; <X, < - <X,y I Q, p;<y,< - <y, in Q, and g = +1,
&, = *1, such that

(=1 (f-g)x)=¢e lf—gl =&, d(fiN), i=12,.,n+1
(=)' f(y) =& lf] =&, d(f, N), i=1,2,.,n+1

Thus for each i=1, 2, ..., n+ 1, one has
(1) e g(x)=(=1) e, f(x)—(=1)"es(f— g)x))
=(—1)"e, f(x,)—d(£, N)<O
and

(=) & 8(y)=(=1) &, f(y) — (= 1) &2 f — £)(1})
=d(f, N)— (=1)" &;(f — g)(:) 20.

That is, g oscillates weakly at x, <x,< --- <x,,;and at y; <y, < --- <
Yn +1-

Let {¢y, .., ¢,} be the set of all zeros of g in {Xy, .., X,y 15 Vis s Y1}

Since N has the property awc,, it follows that i<n. If {¢,,.., 2} is
empty or N-independent, then by applying Lemma 24 to the set
{X1, X3, «y X, 41} oI to the set {y,, y,, ..., ¥,.,} one can conclude that N
is not a weak Chebyshev subspace. So one may assume that 1> 1 and that
the set {¢,.., ¢} is N-dependent. Let {z,,z,,..,z;} be a nonempty
N-totally dependent subset of {¢,, ..., #,}. Then k <n. It will be shown that

{Zla 229 eeesy Zk} < {XI’ x23 ey xn+1} N {yb yZa ==y yn+1}'

Assume not. Then there is iy such that z, ¢ {x;,..,x,.:} or z;¢
{»1> s Yni1} By Lemma 2.1 the set {¢,, 1,, ..., t,}\{z,} is N-independent.
Thus if z,¢ {x;,x,,..,X,,,}, then the points of the set {¢;,..1%} N
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{x{, X3, . X, 41} are N-independent. By applying Lemma 2.4 to the set
{x{, X3, s X, 41} and the function g, one can conclude that N is not a
weak Chebyshev subspace of Cy(Q), which is a contradiction. The same
contradiction can be obtained if z, ¢ { ¥, 2, w Yusi1}-

Since {zy, Zgs e Zx ) S {X1s Xay s Xy 413 OV { V1 V2o wos Yny 1 )s it follows
that there are i, and j, in {1, 2,..,n+ 1} such that z, =x, = y, . Without
loss of generality one might consider the following two cases only.

Case 1. iO =j0.
In this case ¢; =g, since otherwise

(=1)0e; gloxg)=(=1)e fx;) — (= 1), (f — g)x)
= —(=1)%& f(y,) — (=) (f — g)x,)
= —2d(f, N) #0.

Also (—1) e, g(x;)<0and (—1)e, g(y,)=0foreach i=1,2,..,u+1, so
whenever x;= y, one has g(x,)=0. If x,= y,foreach i=1, 2, ., n+ 1, then
g has at least (n+1) zeros, which contradicts the fact that N has the
property awc,. Thus there is m, such that x, # y, . Without loss of
generality assume that x,, < y,,. Obviously i, #m,, so either iy<m, or
io>myg. If ig <my, then since g(y; 1) g(x,, ) <0 and g(x,,) - g(¥m,) <0,
it follows that g oscillates weakly at the (n+ 1) points

i<y, <--- <yi()71<xi0+1< <xmo<ymo< < Vpgr-

Since z; =X € {V1s o Vig 15 Xigt 15 o> Xomgs Yomgs s V1) it follows by
Lemma 2.1 that the set

{21, tas s L} OV { V10 s Vig— 15 Xig 1 s Xmgs s Y1 }

is N-independent. Thus by applying Lemma 24 to the set
{ V15 0 Vig— 1> Xig i 1> s Xpgs Yomg» ~» Yn+1; and the function g, one can
conclude that N is not a weak Chebyshev subspace, which is a contra-
diction. If m, < i, then, by applying Lemma 2.4 to the set

{xls X2y ey xmoa ymga Rl yigAlv xi0+17 seey xn+l}

and the function g, one can conclude that N is not a weak Chebyshev
subspace.

Case 2. iy<J,-

If 6, = —e,, then (—1) e, g(x;)=0 and (—1) ¢, g(y,)>0 for each i=
1,2,.,n+1. Also since iy<j,, it follows that y, <y, =x,<x,, ;.
Therefore g oscillates weakly at the (n+ 1) points

Vi<Vaswo Vg <Xjpp1< -+ <X, .
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Since y;, < y;, = X;, <X, it follows that z, = x, is not an element in the
set {¥1s Y2, s Vig» Xj4 1 }- Therefore, by Lemma 2.1, the set {7, .., ¢} N
{ Y1 Vig» Xig 15 > Xny1} 18 N-independent. Thus it follows by
Lemma 2.4 that N is not a weak Chebyshev subspace. This is a contra-
diction.

If ¢, =¢,, then for each i=1,2,..,n+1),
(—1)'e;g(x;)<0and (—1)"¢, g(y;) >0.

It will be shown that i;<j,— 1. Assume not. Then iy=j,—1, so x; =
yj0: Yig+1- But then

(—1)%e, glxy)=(—1)e; fx;)) — (= 1), (f — g)(x;,)
= _(_1)i0+1 82f(Yi13+1)_(_l)iogl(f'—g)(xio)
2d(f, N)#0.

<X,

w_1- Thus the point

Since iy < j,—1, it follows that y, <y, =x
z, =X, is not any of the (n+ 1) points

ip

y1<y2< e <yj071<xj0_1< R <Xn.

Therefore the set {f, ... ,} N { Y1, s ¥jy 1> Xjy— 15 - X, } is N-independent,
but g oscillates weakly at the points y, <y, < -+ <y 1 <X, ;< -+ <
x,. Thus by Lemma 2.4, the subspace N is not weak Chebyshev, which is
a contradiction.

32. LemMmA. Let Q be a locally compact totally ordered space that
contains at least (n+1) points, and let N be an n-dimensional weak
Chebyshev subspace of Co(Q). If N has the property awc,, then it has the
property awc,.

Proof. Assume that N does not have the property awc,. Then there is
ge N such that ||g| =1 and g has at least (n+ 1) zeros. It will be shown
that there is f € Cy(Q) such that g and 0 are best approximations for f from
N and (f — g) and (f — 0) equioscillate at (n+ 1) points.

Let x;<x,< - <x,,; be (n+1) zeros of g. Since Q is a locally
compact totally ordered space, it follows that there are functions 4 and A’
in Cy(Q) satisfying the following properties:

(a) O0<h(x)<1land O</H(x)<1 for each xe Q
(b) hA(x;,)=1foreachi=1,2,..,n+1, and

1 if 7 is even
hix,)=
(x:) {0 if i is odd.
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Define
_ {h(x), if g(x)=0,
f“x)“{h(xng(x), it g(x) <0,
[ —=h(x)+ g(x), if g{x)>0
fZ(X)_{~h(x),' it g(x)<0.

Then f, and f, are elements in Cy(Q). Furthermore one can easily show
that [ fill=1, Il f2ll=1, | fi—gl=1 and | f,— gl =1.

Let f{x}=h'(x) fi(x)+ (1 —A")(x) fo{x). Then since O0<A(x)<L, it
follows that || f| <1 and ||f— gl <1. Now for each ie {1,2,..,n+1},if{
is even, then

(f = &)x) =fx) =h'(x) filx) + (1 = 1) (x) folx))
= filx)=h(x;)=1,

and if i is odd, then

(f =) x)=f(x:) =R (x) filx)+ (1= H)(x;) fox))
= fo(x;)= —h(x;)= —1

So | f—gll=1, and (f — g) equioscillates at (n+ 1) points of Q. Therefore
by [5, Lemma 2.3], it follows that g is a best approximation for f from M.
On the other hand, [ f—0| =||f] =1 so 0 is another best approximation
for f from N, and since f(x;)=(—1) for each 1=1,2,..,n+1, it follows
that f — 0 equioscillates at (n+ 1) points.

3.3. THEOREM, Let Q be a locally compact totally ordered space that
contains at least (n+1) points, and let N be an n-dimensional weak
Chebyshev subspace of Co(Q). Then N has the property awce, if and only if
it has the property awc,.

Proof. 1t follows from Theorem 3.1 and Lemma 3.2.

3.4. THEOREM. Let Q be a locally compact totally ordered spoace, and let
N be an n-dimensional subspace of Co(Q). If N is a weak Chebyshev
subspace and has the property awc,, then the metric projection P has a
continuous selection.

Proof. 1t follows from Theorem 1.1 and Theorem 3.3.

In the case when N is a finite dimensional Z-subspace of C{a, b], where
[a,b] is a compact real interval, Nurnberger [7] showed that the
existence of a continuous selection for P, is equivalent to the fact that ¥
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is a weak Chebyshev subspace and has the property awc,. However, in
general this is not true. The following example shows that if Q=
[—2,—17uU[1,2], then for each n>1, there is an n-dimensional
Z-subspace N of C(Q) such that N is not a weak Chebyshev subspace, and
the metric projection P, has a continuous selection.

3.5. ExampiE. Let Q=[—2,—1]uU[1,2] and, for each n> 1, let N be
the n-dimensional subspace of C(Q) generated by the polynomials
{x, x% .., x"}. Then each g#0 in N has at most (n— 1) zeros in Q, so N
is a Chebyshev subspace of C(Q). Thus by Haar’s theorem (see Singer [ 10,
Theorem 2.2, p. 215]), for each fe C(Q), the set P,(f) is a singleton. But
then it is well known and easy to show that P,: C(Q)— N is continuous.
On the other hand, if g,(x) = x’ for each 1 <i<n, then one can find x; <
X< -~ <x,and y < y,< --- <y, in Q such that

det[gi(xj)] det[gi(yj)] <0.

Thus N is not a weak Chebyshev subspace.

3.6. THEOREM. Let Q be a compact totally ordered space and let N be an
n-dimensional weak Chebyshev Z-subspace of C(Q). Then the metric
projection Py has a continuous selection if and only if N has the property
awc,.

Proof. This follows from Theorem 1.1, Theorem 3.4, and Brown
[1, the corollary of Lemma 2.

In theorem 3.6 the fact that N is a Z-subspace of C(Q) is essential. The
following example shows that when N is not a Z-subspace, then
Theorem 3.6 need not be true.

3.7. ExampPLE. Let n>=2 be given. For ecach 1<k<n let I,=
[k—% k+1] and let Q={J%_, I,. For each 1<k <n, define g, e C(Q) as
follows:

1 lf X e I k
0 otherwise.

gi(x)= {
Let N be the n-dimensional subspace of C(Q) generated by { g, g2, » &u}>
then N is not a Z-subspace of C(Q) and does not have the property awc;.
In order to show that N is a weak Chebyshev subspace, it is enough to
note that for each x, <x,< --- <x, in Q, it is always true that

det[g,(x,)1>0.
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Furthermore if N,=N|,={gl|,; g€ N}, then N, is a one-dimensional
Chebyshev subspace of C(I,). It will be shown that the metric projection
P,: C(Q)—2" has a continuous selection. Let fe C(Q), and let f, = f1,,.
Then there is a unique real number a,(f) in R such that o, (/) g, is the
best approximation of f; from N. If g,=3%_, a{f) g, then g, is a best
approximation for f from N.

Define y: C(Q) = N by y(f) = g;. Then y(f) e Py(f) for each fe C(Q).
Furthermore, if {f'} is a sequence in C(Q) that converges to f;, then for
each 1 <k < n, the sequence { f} converges to /7. Since N, is a Chebyshev
subspace, it follows that the sequence {o;(f") g,} converges to a(/°) g,
Thus the sequence {Y(f’)} converges to ¥ (/°). That is, ¥ is a continuous
selection for P,.

4. AN EXTENSION OF MAIRHUBER’S THEOREM

In this section it will be shown that if @ is a compact totally ordered
space, and C(Q) contains an n-dimensional weak Chebyshev subspace that
has the property awc,, where x> 3, then Q is homeomorphic to a subset
of the real numbers R. This result together with the results of Section 3
shows that if Q is a compact totally ordered space and C(Q) contains an
n-dimensional weak Chebyshev Z-subspace, where n >3, such that the
metric projection P, has a continuous selection, then @ is homeomorphic
to a subset of the real numbers. The case when n =2 is discussed also, and
an example will be given to show that there is a compact totally ordered
space 0, that is not homeomorphic to any subset of R, such that C(@)
contains a 2-dimensional weak Chebyshev Z subspace N for which the
metric projection P, has a continuous selection.

This result is similar to Mairhuber’s theorem. Mairhuber’s theorem
asserts that if @ is a compact Hausdorff space, and C(J) contains a finite-
dimensional Chebyshev subspace of dimension more than one, then @ is
homeomorphic to a subset of a circle (Schoenberg and Yang {9]). Every
proper compact subset of the circle is homeomorphic to a subset of the real
numbers. In this paper only totally ordered spaces are considered, and
since the topology of the circle cannot be defined by a totally ordering
relation, it follows that any compact totally ordered subspace of the circle
must be a proper subspace. Thus Mairhuber’s theorem can be restated as
follows.

4.1. TaeoreMm (Mairhuber’s Theorem). Let O be a compact  totally
ordered space. If C(Q) contains a finite-dimensional Chebyshev subspace of
dimension not less than two, then Q is homeomorphic to a subset of the real
numbers.
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Schoenberg and Yang [9] proved that if Q is a compact Hausdorff
space with the property that for any nonempty open subset U < Q, the set
Q\U is homeomorphic to a subset of the circle S', then either Q is
homeomorphic to a subset of the circle, or Q is homeomorphic to the
union S' U {a}, where a is a point outside S'. This result can be restated
in the case when Q is totally ordered as follows.

4.2. PROPOSITION. Let Q be a compact totally ordered space. If for each
nonempty open subset U< Q, the set Q\U is homeomorphic to a subset of
the real numbers, then Q is homeomorphic to a subset of the real numbers.

The proof of the following proposition is elementary.

4.3. PROPOSITION. Let Q be a locally compact Hausdorff space, let N be
an n-dimensional subspace of Cy(Q) that has the property awc, and let A
be any closed subset of Q. If N| 4 is of dimension less than n, then A consists
of a finite number of points.

4.4. LemMAa. Let Q be a compact totally ordered space, and let N be a
two-dimensional weak Chebyshev subspace that has the property awc,. If
there is xq€ Q such that g(x,)=0 for each ge N, then Q is homeomorphic
to a subset of the real numbers R.

Proof. 1f x, is an isolated point of O, then Q' = O\ {x,} is compact and
each g #0 in the 2-dimensional subspace N'= N|, has at most one zero.
By Theorem 4.1, the set Q' is homeomorphic to a subset of the real
numbers. But then Q is also homeomorphic to a subset of the real
numbers. Assume that x, is a limit point in 0, and let 0, = {xe Q; x <x,},
0,={xeQ; x>x,}. If x, is not a limit point for Q,, then @, is compact,
so by either Theorem 4.1 or Proposition 4.3, the set Q, is homeomorphic
to a subset of the real numbers. Thus to prove this lemma, it is enough to
show that {xeQ;x>x,} is homeomorphic to a subset of the real
numbers. The same argument is true if x, is not a limit point for Q.. There-
fore the proof will be given only for the following two cases:

Case 1. x, is a limit point for both Q, and Q,.

Let U be a nonempty open subset of Q. By Proposition 4.2 it is enough
to show that Q' = Q\U is homeomorphic to a subset of R. If dim N|, <2
or x,¢ Q’, then by either Proposition 4.3 or Theorem 4.1, the set Q' is
homeomorphic to a subset of R. Thus one may assume that x,e Q’, and
dim N|, =2.

Let g, U. Then either xy<g, or x,>g,. Without loss of generality,
assume that x,> ¢,. Then Q' is the union of the two disjoint compact sets
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Qo=1{xeQ;x>q,} and Q5= {xeQ'; x <q,}. Since x, ¢ Oy, it follows by
either Proposition 4.3 or Theorem 4.1 that Q; is homeomorphic to a
subset of R. Thus it is enough to show that Q.= {xeQ’;x>q,} is
homeomorphic to a subset of R.

Since N is a two-dimensional weak Chebyshev subspace of C(Q), it
follows by Theorem 1.5 that there is a basis {g,, g} of N, and ¢= +1,
such that g,(q,) =0, 2,(x) <0 for x < qq, g,(x) =0 for x = ¢q,, and for each
x<yin @, it is always true that

e[ g1(x) g2(y) — g2x) g.(¥)1=0.

Without loss of generality assume that ¢ = 1. Then since each g £ 0 in N has
at most one zero in Q\{x,}, it follows that for each x < y in Q\{x,} it is
always true that

[g:1(x) g2(y)— g2(x) g4()]1>0.

Therefore, since g,(x)> 0 for each x e Q\ {x,}, it follows that the function
h(x)=1(g(x)/g,(x)) is a continuous, strictly decreasing real-valued func-
tion on Qu\{x,}. Furthermore, if x, and x, are two points in Q such that
go < Xx; <Xxq<X,, then for each x +# x, in the interval {x,, x, ] one always
has

h(x,) > h(x) > h(x,).

Thus lim,, _, <, A(x)=a exists and is finite, and lim = b exists

and is finite. Also if go<x<xy,< y in Q, then

X = X0, X > X0

Mx)>azb>h(y)
Define : @, — R as follows:

h(x)—a+b if x<xg
Y(x)=<b if x=x,
h(x) if x> xg.

Then ¥ is a continuous strictly increasing function from the compact space
Q, onto the Hausdorff space ¢/(Q,) = R. Thus it is 2 homeomorphism; that
is, O, is homeomorphic to a subset of R.

Case 2. Q=g or Q,=¢].

Without loss of generality assume that Q,=(J; that is, 0= {xe(;
X = X0}, and x, is a limit point for Q. Since Q is compact, it follows that
there is g, in Q such that ¢, > x for each xe Q. If ¢, is an isolated point
for Q, then it is enough to show that Q\{g,} is homeomorphic to a subset
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of R. Let U be a nonempty open subset of Q if g, is a limit point, and let
U be a nonempty open subset of Q\{q,} if g, is an isolated point of Q.
Also let ¢, # g, be an element in U. As in Case 1, it is enough to show that
the compact set Q,= {xe Q\U; x <gq,} is homeomorphic to a subset of R.
If xo¢ Q,, then there is nothing to prove. Thus one may assume that
Xo€Qo. As in Case 1, one can find a basis {g;, g,} for N such that
£1(91)=0, g:(x) >0 for x<¢,, g,(4o) =0, and g,(x) >0 for x <gq,. Since
N has the property awc,, it follows that both g, and g, are positive func-
tions on Qy\{x,}. Thus, as in Case 1, there exists he {g,/g,, g,/g,} such
that A is a strictly increasing continuous positive-valued function from
Qo\{xo} into R Let a=lim h(x). Then 0<a<oo, and define

Y:Qo— R by
_ {h(x) if x#x,
w(x)—{a if x=ux,.

Then, as in Case 1, one can show that y is a homeomorphism from Q,
onto a subset of R.

4.5. LeMMA. Let Q be a compact totally ordered space, and let N be an
n-dimensional weak Chebyshev subspace of C(Q) that has the property awc,.
If n=2 and there is xy€ Q such that g(x,)=0 for each ge N, then Q is
homeomorphic to a subset of R.

Proof. By induction. If n=2, then by Lemma 4.4, the hypothesis is
true. Assume that the hypothesis is true for n— 1> 2. It will be shown that
it is true for n.

Let U be a nonempty open subset of Q. By Proposition 4.2, it is enough
to show that Q"= Q\U is homeomorphic to a subset of R. If dim N|, <n
or x,e U, then by either Proposition 4.3 or Theorem 4.1, the set Q' is
homeomorphic to a subset of R. Thus one may assume that dim N|, =n
and x,€Q’. Let goe U, Q;={xeQ;x<qy}, and Q,={x€0';x>q,}.
Then Q' is the union of the two disjoint compact sets Q, and Q,. Without
loss of generality assume that x, e Q,. Therefore, by either Proposition 4.3
or Theorem 4.1, the set @, is homeomorphic to a subset of R. Thus it is
enough to show that 0, is homeomorphic to a subset of R. If dim N|,, <n
then by Proposition 4.3, the set 0, is homeomorphic to a subset of R, so
one may assume that dim N|,, =n. Since N is a weak Chebyshev subspace
of C(Q) that has the property awc,, it follows that there is a basis
{80> &1 > &n_1} Of Nand e= =+1, such that go(g,) =1, g;(g,) = O for each
iz 1, and for each ¢, < g, <.., q,_, in Qy,

& det[gi(qj)]?;ol,’;;ol =& det[g,-(qj)]:-’:_ﬁ}{:f =0,
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and equal to zero if and only if x,€ {g;, ..., 4,_,}. Let N’ be the (n—1)-
dimensional subspace of C(Q,) generated by the restriction of
{81, 825 &n_1} O0 Qy, then N’ is a weak Chebyshev subspace of C{Q,),
that has the property awc,, and g(x,)=0 for each ge N'. Thus since the
hypothesis is true for (n—1), it follows that Q, is homeomorphic to a
subset of R.

4.6. LEMMA. Let Q be a locally compact totally ordered space, let N be
an n-dimensional weak Chebyshev subspace of C(Q) that has the property
awc,, and assume that n=3. If there are x,<Xx, in Q such that the set
{xy, x5} is N-totally dependent, then Q is homeomorphic to a subset of R.

Proof. 1f Q is finite then Q is homeomorphic to a subset of R
Otherwise by Theorem 2.3, either Q= {xe Q; X <x,}u {xeQ;x=x,} or
O={xeQ;x;<x<x,}. f Q={xeQ;x<x,}u{xeQ;x>x,}, then let
O,={xeQ;x<x;}and Q,={xeQ;x=2x,}. f O={xeQ;x; <x<x,},
then let U be any nonempty open subset of O. By Proposition 4.2 it is
enough to show that Q\U is homeomorphic to a subset of R. Let goe U
and let O, ={xeQ\U;x<qo}, O,={xeQ\U;x>¢,}. Then Q\U is the
union of the two disjoint compact sets Q; and Q,. In both cases it is
enough to show that Q, is homeomorphic to a subset of R, and @, is
homeomorphic to a subset of R. It will be shown that {, is homeomorphic
to a subset of R. The proof of the fact that @, is homeomorphic to a subset
of R is similar. If 0, is empty then there is nothing to prove. Otherwise one
can assume that x;¢ 0, and x,€Q,. Let {gy, g5, ... £,} be a basis of N
such that g(x)=1, g;(x;)=0 for each i=2,..,n, and let N' be the
(n—1)-dimensional subspace of N generated by {g,, .., £,}. Then since ¥
has the property awc,, it follows that no g+#0 in N’ can have more than
(n—1) zeros in @,. So if @, is not finite, then by Proposition 4.3,
dim N|,,=nr—122. Also since {x,, x,} is N-totally dependent, it follows
that g(x,} =0 for each ge N'[,,. Thus N'|,, is an (r»— 1)-dimensional sub-
space of C((Q,) that has the property awc,, and g{x,}=0 for each
geN'|,,. Therefore, since n—12>2, it follows by Lemma 4.5 that it is
enough to show that N'j,, is a weak Chebyshev subspace of C(Q,). By
Theorem 1.5 it is enough to show that there is ¢ = +1 such that for each
Va< - <y, in Q,, it is always true that

edet[ g;(y;) ?fz,j:2>0-

Since N is a weak Chebyshev subspace, then there is ¢ = +1 such that for
each y, <y, < ---<y,in Q

€ det[gi(yj)]’;gl,j:l =0.
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Let y, =x,, and choose any y, < y; < --- < y,,_; in Q5. Since g,(y,)=1
and g,(y,)=0for i=2, .., n, it follows that

4 det[gi(yj)]?:Z,j:Z =é& det[gi(yj)];’:ll,jzl 2 0.

47. LemMA. Let Q be a compact totally ordered space. If C(Q) contains
a three-dimensional weak Chebyshev subspace that has the property awc,,
then Q is homeomorphic to a subset of R.

Proof. 1If each subset of @ that consists of a three points is
N-independent, then no g#0 in N can have more than two zeros, so N
is a three-dimensional Chebyshev subspace of C(Q). Therefore, by
Theorem 4.1, the set Q is homeomorphic to a subset of R.

Assume that there is at least one N-dependent subset of O that consists
of three points. Then there is at least one N-totally dependent nonempty
subset of Q that contains at most three points.

If there is x,€ Q such that {x,} is N-totally dependent, then g(x,)=0
for each ge N. Thus by Lemma 4.5, the set Q is homeomorphic to a subset
of R, and if there are x;<x, in Q such that {x;,x,} is N-totally
dependent, then by Lemma 4.6, the set Q is homeomorphic to a subset of
R. Thus one may assume without loss of generality that there is at least one
N-totally dependent subset of Q that contains exactly three points, and
each N-totally dependent subset of @ that contains at most three points
must contain exactly three points. Using Theorem 2.3, one can isolate the
following two cases only:

Case 1. There are x; <x,<x; in Q such that {x, x,, x;} is N-totally
dependent, Q= {xe Q; x<x,} U {x,} U {xeQ;x=x,} and {xe Q; x<x,}
#D, {xeQix>x3} # .

Let O, ={xeQ;x<x,} and Q,={x€ Q; x> x,}. Then it is enough to
show that both Q, and Q, are homeomorphic to subsets of R. To prove
that Q, is homeomorphic to a subset of R, let N'={geN; g(x;)=0}.
Then N’ is a two-dimensional subspace of C(Q) and no g#0 in N’ can
have more than two zeros in Q. Therefore, by Proposition 4.3 if Q, is not
finite then dim N'|,, =2. It will be shown that no g#0 in N’ can have
more than one zero in Q. Indeed, if there is g#0 in N and y, < y, in Q,
such that g(y,)= g(»,)=0, then {y,, y,, x5} are the zeros of g. Thus the
set {y,, y2, X3} is N-dependent, and since each N-totally dependent subset
of O that contains at most three points must contain three points, it follows
that {y,, y,, x5} is N-totally dependent. But this contradicts Theorem 2.3
because x,€ {x€ Q; y,<x<x3} and {xeQ;x>x;} # . Therefore N'|,,
is a two-dimensional Chebyshev subspace of C(Q,). Thus by Theorem 4.1,
the set Q, is homeomorphic to a subset of R. In the same way, one can
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show that @, is homeomorphic to a subset of R. Therefore, Q is
homeomorphic to a subset of R.

Case 2. There are two subsets 4,, 4, each of which consists of at most
two points of Q, y, < y, in Q such that y,>x for each xe 4,, y,<x for
each xe 4, and

O=4,u{xeQ;y, <x< ¥} Vd,

Furthermore no subset of {xeQ; y, <x<y,} that consists of at most
three points is N-totally dependent.

In this case either the set Q,={xeQ; y, <x<y,} is finite or by
Proposition 4.3 dim N|,, = 3. If dim N|,, = 3, then since each subset of Qg
that consists of three points is N-independent, it follows that N, is a
three-dimensional Chebyshev subspace of C(Q,). By Theorem 4.1, the set
0,, and therefore the set Q, is homeomorphic to a subset of R.

4.8. THEOREM. Let Q be a compact totally ordered space. If C(Q)
contains a finite-dimensional weak Chebyshev subspace N of dimension at

least three, and N has the property awc,, then  is homeomorphic to a subset
of R.

Proof. By induction. Let dim N=n. If =3 then by Lemma 4.7, the
hypothesis is true. Assume that the hypothesis is true for n—1 > 3. It will
be shown that it is true for n.

Let ¥ be a n-dimensional weak Chebyshev subspace of C(Q) that has
the property awc,. If each » points of O are N-independent, then N is a
Chebyshev subspace of C(Q). Therefore by Theorem 4.1, the set @ is
homeomorphic to a subset of R. If N is not Chebyshev subspace of C(Q),
then there are x, <Xx,< --- <x, in Q with | <k < such that {x, .., x;}
is N-totally dependent. If k=1, then by Lemma 4.5, the set O is
homeomorphic to a subset of R; if k=2, then by Lemma 4.6, the set O is
homeomorphic to a subset of R. Thus one might assume that k>3 and O
is not finite. By Theorem 2.3, there is iye {1, 2, .., k} such that x, is an
isolated point for Q. Let Q= {xeQ;x<x,} and Q,={xeQ;x>x,}.
Then @, and Q, are compact and Q = Q, u {x, } U Q,. Therefore to prove
that Q is homeomorphic to a subset of R, it is enough to show that ¢, and
0, are both homeomorphic to subsets of R. If Q, is empty or finite, then
it is homeomorphic to a subset of R. Otherwise one might assume that
dim N|g,=n. Let N'={geN; g(x,)=0}. Then dim N'=n—1, and since
N has the property awc,, it follows that no g #0 in N’ can have more than
(n—1) zeros in Q,. Thus N|,, is an (#n — 1)-dimensional subspace of C(Q,)
that has the property awc;. It will be shown that N|,, is a weak Chebyshev
subspace of C(Q,). Let {g,, .., g,} be a basis for N" and let g, € N be such
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that g,(x,)=1. Then {g;, g, .., g&.} is a basis for N. Since N is a weak
Chebyshev subspace of C(Q), it follows that there is e= +1 such that for
each y, <y, < --- <y, in Q;

edet[g,(y)]1iL, ;2120
Let y,<y;< --- <y, be (n—1) points of @, and let y, = x,,. Then
€ det[gi(yj)]?gz,j=2 =& det[gi(yj‘)]?fl,j=1 =0.

Thus N’|,, is an (n— 1)-dimensional weak Chebyshev subspace of C(Q,)
that has the property awc,. Therefore Q, is homeomorphic to a subset
of R. In the same way one can show that Q, is also homeomorphic to a
subset of R. So Q@ is homeomorphic to a subset of R.

49. THEOREM. Let Q be a compact totally ordered space, and let N be
an n-dimensional weak Chebyshev Z-subspace of C(Q) such that n= 3. If the
metric projection Py has a continuous selection, then Q is homeomorphic to
a subset of R.

Proof. By Theorem 3.6, N has the property awc,. Therefore by
Theorem 4.8, the set Q is homeomorphic to a subset of R.

Another way of writing Theorem 4.9 is as follows:

4.10. TueorREM. Let Q be a compact totally ordered space that is not
homeomorphic to any subset of R, and let N be an n-dimensional weak
Chebyshev Z-subspace of C(Q). If n2 3 then the metric projection P, has no
continuous selection.

Theorems 4.8 and 4.9 need not be true if dim N = 2. The following example
shows that there is a compact totally ordered space Q, that is not
homeomorphic to any subset of R, and such that C(Q,) contains a two-
dimensional weak Chebyshev Z-subspace which has the property awc,.

4.11. BExampLE. Let Q, be the set ([0, 1] x {0, 1})\{(0,0), (1,1)}, and
let < denote the lexicographic ordering on Q,; that is, (a, b) < (¢, d) if and
only if a< ¢ or a=c and b <d. By Brown [2] the totally ordered space O,
is compact separable, and not homeomorphic to any subset of R.
Furthermore, no x € Q, is an isolated point.

Define g, and g, on Q, as follows:

gl(x, y):1 for eaCh (xa y)EQO:\
g:(x, y)=x  foreach (x, y)e Q.
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Then {g,, g-} is a subset of C(Q,). Let N be the two-dimensional subspace
of C(Q,) generated by {g,, g,}. Then N is a Z-subspaced of C(Q,) and
each ge N has at most one change of sign. By Theorem 1.5, N is a two-
dimensional weak Chebyshev subspace of C(Q,). On the other hand, g#0
in N has more than one zero in the set {(x, 0);xe(0,1)} sono g#0in N
has more than two zeros in Q. Thus N has the property awce,.
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