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The main result in this paper is the characterization of all n-dimensional weak
Chebyshev Z subspaces of C(Q) for which the metric projection has a continuous
selection. It is also shown that if n ;;> 3 and PN has a continuous selection, then Q
should be homeomorphic to a subset of R. © 1991 Academic Press, Inc.

1. INTRODUCTION

The closed subset A of the normed linear space X is said to be
proximina1 in X, if for each x EX there is yEA such that d(x, A) = Ilx - YII,
where d(x, A) is the distance from x to A; that is,

d(x, A)=inf{llx- YII; YEA}.

For the proximinal set A in X, the set-valued function PA : X -+ 2A defined
by P A(X) = {y EA; Ilx - yll = d(x, A)} is called the metric projection from
X onto A, and if there is a continuous function I: X -+ A such that
I(x) E PA(X) for each x EX, then I is called a continuous selection for the
metric projection P A •

"Q is a totally ordered space" means that Q is a totally ordered set and
the topology defined on it is the order topology. If Q is a locally compact
totally ordered space, then Co(Q) is the Banach space of all continuous
real-valued functions defined on Q and "vanishing at infinity"; that is, if
IE Co(Q), then for all s > 0, the set {q E Q; I/(q)1 ;;;, s} is compact. If Q is
compact then Co(Q) is denoted C(Q). The norm defined on Co(Q) and
C(Q) is the uniform norm; that is, IIIII =sup{l/(q)l; qE Q}. The subspace
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N of Co(Q) is called a Z-subspace if no g -=1= 0 in N vanishes on a nonempty
open subset of Q. Any subset of the real numbers is totally ordered, and
any proper subset of the circle is totally ordered. Another very important
totally ordered space is the "interval with split points" (for definition see
Brown [1, 2J; also see Example 4.11 in this paper). Totally ordered spaces
have a very strong relation with the existence of a continuous selection for
the metric projection. Brown [1] proved that if Q is any compact
Hausdorff space and C(Q) contains a finite dimensional Z-subspace N of
dimension at least two such that the metric projection P N has a continuous
selection, then either Q is homeomorphic to a subset of the cirde or Q is
homeomorphic to a subset of an interval with split points.

If Q is a locally compact totally ordered space, then the n-dimensional
subspace N of Co(Q) is called a Chebyshev subspace if each g -=1= 0 in N has
no more than (n - 1) zeros. N is called a weak Chebyshev subspace if for
each basis {gj, gh ..., gn} of N, Xl < X2 < ... < Xn in Q, and Yl <
12 < ... < Yn in Q,

Jones and Karlovitz [4], Deutsch, Nurnberger, and Singer [3 J, and
Kamal [5J studied other equivalent properties of the weak Chebyshev
subspaces. One of these properties is the following:

For each!E Co(Q) there is gE N such that II! - gil = d(j, N) and (f - g)
equioscillates at (n + 1) points of Q; that is, there are Xl < X 2 < ... < X n + 1

in Q and £ = ±1, such that

(_I)i (f - g)(x;) =£ Ilf - gil, for i = 1, 2, ..., n + 1.

This property is related to the existence of a continuous selection for the
metric projection P N : Co(Q) ~ 2N

. This relation can be seen in the
following theorem:

1.1. THEOREM. Let Q be a locally compact totally ordered space, let N be
an n-dimensional subspace of Co(Q), and let P N be the metric projection
from Co(Q) onto N. If for each f E Co(Q) there is a unique gfE PN(f) such
that (f - gf) equioscillates at (n + 1) points, then the mapping ljJ: Co(Q) ~ N
defined by ljJ(f) = gf is a continuous selection for the metric projection PN'

The proof of this theorem is easy and can be obtained from the proof of
the special case when Q is a compact real interval; that was done by
Nurnberger and Sommer [8].

1.2. DEFINITION. Let Q be a locally compact totally ordered space,
let N be an n-dimensional subspace of Co(Q), and let P N be the metric
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projection from Co(Q) onto N. The subspace N mayor may not possess
one of the following properties:

awc!: Each g#-O in N has at most n distinct zeros

awc2: For each !ECo(Q) there is a unique gEPN(f), such that
(f - g) equioscillates at (n + 1) points.

By Theorem 1.1, if N has the property awc2 then the metric projection
PN has a continuous selection. In the case when N is a weak Chebyshev
subspace, each! E Co(Q) has at least one g EPN(f) such that (f - g) equi
oscillates at (n + 1) points of Q, so in order to show that the metric projec
tion P N from Co(Q) onto the n-dimensional weak Chebyshev subspace N
of Co(Q) has a continuous selection, it is enough to show that, for each
! E Co(Q), there is at most one g E PN(f) such that (f - g) equioscillates at
(n + 1) points. Using the properties of the real intervals, Nurnberger and
Sommer [8J proved that the properties awc! and awc2 are equivalent for
any n-dimensional weak Chebyshev subspace N of C[a, bJ, where [a, bJ is
a compact real interval. Nurnberger [6J obtained the same result for any
n-dimensional weak Chebyshev subspace of Co(Q), where Q is any locally
compact subset of the real numbers. However, his proof is very difficult and
depends very strongly on the properties of the real numbers, so it cannot
be generalized any more.

In this paper the author studies the property awc! and its relation with
the existence of a continuous selection for the metric projection in the
general case when Q is any locally compact (resp. compact) totally ordered
space. In Section 2, the author studies the properties of the order topology
on Q that are related to the existence of the property awc! in some
n-dimensional weak Chebyshev subspaces of Co(Q). These properties are
not algebraic, and they are satisfied by some spaces that are not
homeomorphic to subsets of the real numbers. In Section 3, the author
uses some of these properties to prove that the properties awc! and awc2
are equivalent on any n-dimensional weak Chebyshev subspace of Co(Q),
where Q is any locally compact totally ordered space. The proof is very
simple and natural. Combining this result with some other results, it is
shown that if N is a finite-dimensional weak Chebyshev Z-subspace of
C(Q), then the metric projection P N has a continuous selection if and only
if N has the property awc!. This result gives a full characterization for
those finite-dimensional weak Chebyshev Z-subspaces of C(Q) for which
the metric projection P N has a continuous selection.

The natural question that one may ask is whether the property awc! is
satisfied by some n-dimensional weak Chebyshev subspaces of C(Q), when
Q is not homeomorphic to any subset of the real numbers. The answer is
an extension to Mairhuber's theorem. Mairhuber's theorem asserts that if
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there is a Chebyshev subspace of C(Q) of finite dimension not less than
two, then Q is homeomorphic to a subset of the circle. The proof of
Mairhuber's theorem can be found in Singer [10]. In Section 4, it is
shown that if Q is a compact totally ordered space, C(Q) contains an
n-dimensional weak Chebyshev s.ubspace that has the property awc l' and
n ~ 3, then Q is homeomorphic to a subset of R. In the case when
dim N = 2, an example will be given to show that this result fails. However,
if dim N = 2 and there is X oE Q such that g(xo) = 0 for each g E N, then the
result holds. Combining this result with other results from Section 3, it is
shown also that if Q is a compact totally ordered space and C(Q) contains
a finite-dimensional weak Chebyshev Z-subspace of dimension not less
than three, and the metric projection PN has a continuous selection, then
Q is homeomorphic to a subset of R. In the case when the dimension of
this subspace is 2, an example will given to show that this result fails.

The rest of this section will cover some definitions and known results
that will be used later in this paper. In this paper "Q is a totally ordered
space" means that Q is a totally ordered set with the order topology
defined on it. The intervals [x, y], (x, y) in Q and the terminologies - 00

and + 00 have their ordinary meaning. If Q is a locally compact totally
ordered space, then f E Co(Q) is said to "oscillate weakly" (resp. "oscillate")
at k points of Q if there are Xl < X 2 < ... < Xk in Q and 13 = ±1 such that
(-1)iEf(xJ~0 (resp. (-1)i Ef(xJ>0) for an i=1,2, ,k.fis said to
"equioscillate" at k points of Q if there are Xl < X 2 < < Xk in Q, and
13 = ±1 such that (_1)i f(xJ = 13 Ilfll for all i = 1, 2, , k. If N is an
n-dimensional subspace of Q, then the points Xl' X 2 , ... , X k are said to be
"N-independent" if the linear functionals Xl' X2 , ••• , Xk defined by xi(g) =
g(xJ are linearly independent in N*, the dual space of N.

The proof of the following lemma is elementary:

1.3. LEMMA. Let Q be a locally compact Hausdorff space, and let N be
an n-dimensional subspace of Co(Q). The points X l' X 2 , ... , Xb k ~ n in Q are
N-independent if and only if for each aI' a2 , .•. , elk in R (the set of real
numbers), there is g E N such that g(xJ = aJor each i = 1, 2, ... , k.

1.4. DEFINITION. Let Q and N be as in Lemma 1.3. The distinct points
Xl' X 2 , ... , X k in Q are called "N-totally dependent" if there are )'1' A2' ..., Ak

in R with A,40 for each i, such that L:7= 1 )'iXi = 0, where Xi is the linear
functional in N* defined by Xi.

An N- totally dependent subset {x 1, X 2, ... , X k} of Q need not be a "mini
mal dependent" subset of Q with respect to N, but in Section 2, it will be
shown that if N has the property awc 1, and 1~ k ~ n, then any N-totally
dependent subset {Xl> X 2 , .•. , xd of Q is a minimal dependent subset
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with respect to N. Obviously each N-dependent subset of Q contains a
nonempty N-totally dependent subset.

1.5. THEOREM (Kamal [5]). Let Q be a locally compact totally ordered
space that contains at least (n + 1) points, and let N be an n-dimensional
subspace of Co(Q). Then the following properties are equivalent:

WC1: Each g -1= 0 in N has at most (n - 1) changes of sign; that is, no
g in N oscillates at (n + 1) points or more in Q.

WC2 : N is a weak Chebyshev subspace of Co(Q).

WC3 : For each Xl < X2 < ... < x n - l in Q, there is g -1= 0 in N such that
g(xJ=Ofor i=1,2, ...,n-1, and

(_1)i g(x)?>OforxE(x;,x;+d, for i= 1, 2, ..., n-1,

where Xo= -00 and Xn = +00.

WC4 : For each f E Co(Q) there is gE N such that Ilf - gil = d(f, N),
and (f - g) equioscillates at (n + 1) points in Q.

2. THE PROPERTY awc l

In this section some simple results will be obtained to clarify the relation
between the property awc l and the order topology on Q. These results will
be used in Section 3 and Section 4 to obtain the main results.

2.1. LEMMA. Let Q be a locally compact Hausdorff space, let N be an
n-dimensional subspace of Co(Q) that has the property awc l , and let
{X l ,X2 , ... ,Xk }, 1~k~n, be an N-totally dependent subset ofQ. Thenfor
each Yk+l' ..., Yk+l in Q\{x l , ..., xd, where k~k+l~n+ 1, and each ioE
{1, 2, ..., k} the points

are N-independent.

Proof If Q consists of exactly n elements then the proof is obvious. So
without loss of generality one might assume that Q contains at least n + 1
elements, and k + I = n + 1.

The set {Xl' X2, ..., xd is N-totally dependent, so there are AI' ..., Aio-l,

Aio +1> ..., Ak in R with A;-I=O for each i, such that

k

g(x;o) = L A;g(XJ
i=l
i#io

for each g E N.
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Let {Xl' ... , XiO - l ' XiO +l ' ... , Xk, Yk+l, ..., Yn+l} = {Zl' Z2, ... , zn}, and
assume that the points Zl, Z2, ... , Zn are N-dependent. Then there are joE
{1, 2, ..., n} and fl.l, fl.2, ..., Pjo-l, Pjo+l> ..., Pn in R such that

n

g(Zjo) = L Pi g(zJ
i~ 1
ii' jo

for each g E N.

Since dim N = n, it follows that there is g#-O in N, such that g(s) = 0 for
each SE{Zl, ... ,Zjo_l,Z/o+I"",Zn}' But then g(Zjo)=O and therefore
g(x io ) = 0, so g has more than n zeros in Q, which contradicts the fact that
N has the property awc l .

2.2. COROLLARY. Let Q, N, and {Xl' ..., xd be as in Lemma 2.1. Then
any proper nonempty subset of {x I' ... , X d is N-independent.

In Theorem 2.3, the notation "x = L~~ 1 AiXi," means that

k

g(x) = L Ai g(xJ
i= 1

for each g E N.

If {gl' ..., gn} is a basis for N, and Xl> X2, ..., Xn are in Q, then det[gi(x)]
will be denoted by lXI, X 2 , ..., xnl; that is,

gl(Xl ) gl(X2)

g2(X l ) g2(X2)
lXI, X 2 , ••• , xnl =

2.3. THEOREM. Let Q be a locally compact totally ordered space, let N be
an n-dimensional weak Chebyshev subspace of Co(Q) that has the property
awc l , and Xl < X2< ... < Xb 1~ k ~ n, be an N-totally dependent subset of
Q. If Q contains at least n + 2 points, then either [x!, xd = {Xl' X2, ... , xd
or there is io in {1, 2, ..., k -1} such that Q\(x io ' x io +d = {Xl' X2, ..., xd.

Proof If k = 1 then there is nothing to prove, so one can assume that
k~2 and that [Xl' Xk] #- {Xl' X2, ... , x k }. It will be shown that there is ioE
{1, 2, ... , k-1} such that Q\(xio ' Xio +l )= {Xl' X2, ..., xd.

Since [xl,xd #- {Xl,X2, ...,xd it follows that there is io in
{1, 2, ..., k -1} such that the open interval (x io ' x io +d is not empty. It will
be shown that Q\(xio ' xio+d = {Xl> X2, ..., xd; that is, the set

is empty.
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Assume not, and let YoEA. Since (x io ,Xio +1)#0, let XoE(Xio,Xio+1)'

Either Yo> X io + 1 or Yo < x io ' The proof will be given for the case when Yo >

x io + 1; the proof for the other case is similar.
Since {Xl' X2' ..., xd is N-totally dependent, there are nonzero real

numbers A, Ai> ..., Aio-i> Aio + 2' ... , Ak such that

(*)
i= 1

i;,Uo,io+1}

Let t 1 < t 2 < ... < t n be a subset of Q satisfying the following properties:

(a) {Xl' X2' ... , X io - 1' X O' Xio+i> ... , Xk} S {ti> t 2, ... , t n },

(b) X io ¢. {ti> t 2 , ... , t n } and Yo¢. {t 1, t 2 , ... , t n }.

This can be done because k:::;; nand Q contains at least (n + 2) points. By
defining to= -00 and tn + 1 = +00, one can findjoin {l,2, ....,n+1} such
that x io E (tjo - b tjo)' Also there is m> 1 such that x io + 1 = t m . Let Z1 <
Z2 < ... <zn be the set obtained from the set {t b t 2 , ... , t n } by replacing X o

by Yo. Then since Xio<XO<Xio+1 and YO>Xio + 1' it follows that XioE

(Zjo-1, Zjo) and X io + 1 =Zm-1' By Lemma 2.1 the points t 1, ... , t n are
N-independent, and the points Z l' ... , Zn are N-independent. Thus if
{gb g2' ..., gn} is any basis for N, it follows that

and

But N is a weak Chebyshev subspace of Co(Q), so

1t 1, t 2 , ... , t m , ... , t n I . Izl' Z2' ..., Zm -1' ... , Zn 1> o.
By (*),

It 1, ... , tjo - 1' tjo' ... , t m , ... , tnl

= A It 1, ... , tjo - 1' tjo' ... , t m - 1, X io ' t m + 1, ... , t n 1

= A( _l)m - jo 1t l' ... , tjo - 1' X io ' tjo' ..., t m -1' t m + l' ... , t n I.

Also

IZ 1' ... , Zjo-1' Zjo' ... , Zm-1' , znl

=A IZ 1' ..., Zjo-1, Zjo' , Zm-2' X io ' Zm' ... , znl

_ 1( l)m - jo - 1 I I
-/l, - Zl, ... ,Z}o-1,Xio ,Z}o, ... ,Zm-2,Zm, ... ,Zn'

Thus
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But t1<t2< ... <tjo - 1<xio<tjo < ... <tn, Zl <Z2< ... <Zjo-1 <Xio <
Zio < ... < Zn' and N is a weak Chebyshev subspace. Therefore

·lz1, ... , zio-1, x io ' Zjo' ... , Zm-2, Zm, ..., znl ~O

so - A2> 0, which is a contradietion.

The following lemma will be used frequently in Section 3.

2.4. LEMMA. Let Q be a locally compact totally ordered space, let N be
an n-dimensional subspace of Co(Q), and let Xl < X2 < ... < Xn+ 1 be (n + 1)
points of Q. Assume that there is g#-O in N such that g oscillates weakly at
the points X1'X2' ...,Xn+ 1. Let {Xii,Xi2"",Xik} be the set of all points in
{x 1 , ... , Xn+ 1 } at which g == 0. If the set {Xii' ..., Xik} is empty or N-independent,
then N is not a weak Chebyshev subspace of Co(Q).

Proof If the set {Xi!' ..., x;J is empty, then g oscillates at (n + 1) points
of Q. By Theorem 1.5, N is not a weak Chebyshev subspace of Co(Q). Now
assume that the set {Xii' ..., X ik } is a nonempty N-independent subset of Q.
Then 1~ k ~ n. Since g oscillates weakly at Xl < X2 < ... < X n + 1> one may
assume that

(-1)ig(XJ~0 for i= 1, 2, ... , n+ 1.

Let A = !min{lg(xJI; g(xJ #- 0, i = 1,2, ...,n + I}. Then ), > O. By
Lemma 1.3, there is g' in N such that

g'(X i ) = (-1 )ij
)

for j = 1, 2, ..., k.

Let h = g + },(g'/II gill). Then hEN and h oscillates at Xl < X 2< ... < Xn+ j'

Thus by Theorem 1.5, N is not a weak Chebyshev subspace.

3. THE EQUIVALENCE BETWEEN awc j AND awc2

In this section it is shown that if Q is a locally compact totally ordered
space, and N is an n-dimensional weak Chebyshev subspace of Co(Q), then
N has the property awc j if and only if it has the property awc2' Therefore,
by Theorem 1.1, if the weak Chebyshev subspace N has the property awc j ,

it follows that the metric projection P N has a continuous selection. Come
bining this result with a result of Brown [1], it is shown also that if the
n-dimensional weak Chebyshev subspace N is a. Z-subspace, then P N has
a continuous selection if and only if N has the property awc 1 .

640/67/2-3
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3.1. THEOREM. Let Q be a locally compact totally ordered space that
contains at least (n + 1) points, and let N be an n-dimensional weak
Chebyshev subspace of Co(Q). If N has the property awc l , then it has the
property awC2'

Proof Let f E Co(Q). By Theorem 1.5, there is g EN such that
d(f, N) = Ilf - gil, and (f - g) equioscillates at (n + 1) points. It will be
shown that g is unique.

If fEN then there is nothing to prove. So assume that f ¢ N, and that
there is another g' in N such that d(f, N) = Ilf - gill, and (f - g') equi
oscillates at (n + 1) points. Without loss of generality one may assume that
g#O and g' =0.

Since (f - g) and f equioscillate at (n + 1) points, it follows that there
are XI<X2< ... <Xn+1 in Q, YI<Y2< ... <Yn+1 in Q, and 8 1 = ±1,
82 = ±1, such that

(_l)i (f - g)(xJ = 8 1 Ilf - gil = 8 1 d(f, N),

( _1)i f(yJ = 82 Ilfll = 82 d(f, N),

Thus for each i = 1, 2, ..., n + 1, one has

i = 1, 2, , n + 1

i = 1, 2, , n + 1.

(_1)i 8 1 g(xJ = (_1)i 8d(xJ - (_1)i 8 1(f - g)(xJ

= (_l)i 8 1 f(xJ - d(f, N) ~ 0

and

(_1)i 82 g(yJ = (_1)i 82f(Yi) - (_1)i 82(f - g)(yJ

= d(f, N) - (_1)i 82(f - g)(Yi) ~ O.

That is, g oscillates weakly at x 1< X 2 < ... < X n + I and at YI < Yz < ... <
Yn+I'

Let {t l , ..., (,} be the set ofall zeros of g in {XI' ..., Xn+l , YI' ..., Yn+d.
Since N has the property awc l , it follows that I ~ n. If {t I, ..., (,} is

empty or N-independent, then by applying Lemma 2.4 to the set
{XI' X2' ..., xn+d or to the set {Yl> Yz, ..., Yn+d one can conclude that N
is not a weak Chebyshev subspace. So one may assume that I ~ 1 and that
the set {(I, ... , (,} is N-dependent. Let {ZI , Z2, ..., Zd be a nonempty
N-totally dependent subset of {t I' ... , t,}. Then k ~ n. It will be shown that

{ZI' Z2' ..., Zk} £: {XI' X2, ..., Xn+l} n {YI' Y2' ..., Yn+I}'

Assume not. Then there is io' such that z;,,¢ {Xl> ..., xn_p} or Zio¢
{YI' ..., Yn+I}' By Lemma 2.1 the set {t l , t2, ..., t,}\{Zio} is N-independent.
Thus if Zio¢={XI,X2, ...,xn+d, then the points of the set {tl, ...,t,}n
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{XI' X2 , , xn+d are N-independent. By applying Lemma 2.4 to the set
{XI' X2, , X n + d and the function g, one can conclude that N is not a
weak Chebyshev subspace of Co(Q), which is a contradiction. The same
contradiction can be obtained if Zio¢ {YI, Y2, ..., Yn+d·

Since {ZI, Z2' ... , zd <;: {XI' X2 , , xn+d n {YI, h, ..., Yn+d, it follows
that there are io and io in {I, 2, , n + 1} such that Z1= x io = Yjo' Without
loss of generality one might consider the following two cases only.

Case 1. io= io.
In this case 8 1 = 8 2 since otherwise

(-lrO 81 g(x io ) = (_I)iO 8J!(xia ) - (-lrO 81(/ - g)(x io )

= - (-Ira 82 !(Yio) - (-1 ro 8 1(/ - g)(x io )

= -2d(j, N) # O.

Also (_I)i 81 g(xJ ~ 0 and (_I)i 81 g(Yi) ~ 0 for each i = 1, 2, ..., n + 1, so
whenever Xi = Yi one has g(xJ = O. If Xi= Yi for each i = 1, 2, ..., n + 1, then
g has at least (n + 1) zeros, which contradicts the fact that N has the
property awc l . Thus there is mo such that x mo '" Ymo' Without loss of
generality assume that x mo < Ymo' Obviously io# mo, so either io< ma or
io> mo· If io< mo, then since g(Yio-l) . g(x io +I) ~ 0 and g(xmo ) . g(Ymo) ~ 0,
it follows that g oscillates weakly at the (n -+- 1) points

Since ZI =xio ¢ {YI' ..., Yio-I' X io + I ' ... , Xmo ' Ymo' ..., Yn+d, it follows by
Lemma 2.1 that the set

{t l , t2 , ... , t,} n {YI' ..., Yio-I' X io + I ' ... , Xmo ' ..., Yn+l}

is N-independent. Thus by applying Lemma 2.4 to the set
{YI' ..., Yio-I' Xio+l> ..., Xmo ' Ymo' ..., Yn+d and the function g, one can
conclude that N is not a weak Chebyshev subspace, which is a contra
diction. If mo< io, then, by applying Lemma 2.4 to the set

and the function g, one can conclude that N is not a weak Chebyshev
subspace.

Case 2. io<io.
If 81 = -82, then (-I)i82g(xJ~O and (-1)i82g(Yi)~O for each i=

1,2, ...,n+1. Also since io<io, it follows that Yio<Yjo=Xio<Xio+I'
Therefore g oscillates weakly at the (n + 1) points
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Since Yio < Yio = x io < x io +1 it follows that Z 1= x io is not an element in the
set {Yb Y2, ..., Yio' Xio +d· Therefore, by Lemma 2.1, the set {t I, ... , t.} n
{Yb""Yio,Xio+I, ...,xn+d is N-independent. Thus it follows by
Lemma 2.4 that N is not a weak Chebyshev subspace. This is a contra
diction.

If GI =Gz, then for each i= 1, 2, ..., n + 1),

It will be shown that io <)0 - 1. Assume not. Then io = )0 - 1, so X io =
Yio= Yio+I' But then

( -1 )iO GI g(x iO ) = ( -1 )iO GI!(x io ) - ( _1)ioGI(f - g)(x io )

= -( _1)io+ I Gzf(Yio+ I) - (_I)iO GI(f - g)(xio )

=2d(f, N) # O.

Since io<)0 - 1, it follows that Yio-I < Yio = x io < xio - I' Thus the point
Z 1= x io is not any of the (n + 1) points

Therefore the set {t l , ... , t,} n {YI, ..., Yio-I' Xio-b ..., x n} is N-independent,
but g oscillates weakly at the points Y I < Y2 < ... < Yio - I < xio - 1< ... <
X n • Thus by Lemma 2.4, the subspace N is not weak Chebyshev, which is
a contradiction.

3.2. LEMMA. Let Q be a locally compact totally ordered space that
contains at least (n + 1) points, and let N be an n-dimensional weak
Chebyshev subspace of Co(Q). If N has the property awcz, then it has the
propertyawc l •

Proof Assume that N does not have the property awcl' Then there is
g EN such that II gil = 1 and g has at least (n + 1) zeros. It will be shown
that there is f E Co(Q) such that g and 0 are best approximations for ffrom
Nand (f - g) and (f -0) equioscillate at (n + 1) points.

Let Xl<X Z < ... <xn+1 be (n+l) zeros of g. Since Q is a locally
compact totally ordered space, it follows that there are functions hand h'
in Co(Q) satisfying the following properties:

(a) O::::;h(x)::::;1 andO::::;h'(x)::::;1 foreachxEQ

(b) h(x;) = 1 for each i = 1, 2, ..., n + 1, and

, {Ih (X;) = 0
if i is even
if i is odd.
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{
h(X),

fl(x) = h(x) + g(X),

f( )
={-h(X)+g(X),

2 x -h(x);

if g(x) ~ 0,

if g(x) < 0,

if g(x»O

if g(x):( O.

Then fl and f2 are elements in Co(Q). Furthermore one can easily show
that Ilflll = 1, IIf211 = 1, Ilfl - gil = 1, and IIf2 - gil = 1.

Let f(x)=h'(x)fl(x)+(1-h')(x)f2(x). Then since O:(h'(x):(l, it
follows that Ilfll :( 1 and Ilf - gil :( 1. Now for each i E {I, 2, ..., n + 1}, if i
is even, then

(f - g) (x;) = f(xJ = h'(xJ fl(xJ + (1 - h')(x;) f2(X;)

= fl (x;) = h(x;) = 1,

and if i is odd, then

(f - g)(xJ = f(xJ = h'(xJ fl(x;) + (1- hl)(x;) f2(X;)

= f2(X;) = -h(x;) = -1.

So Ilf - gil = 1, and (f - g) equioscillates at (n + 1) points of Q. Therefore
by [5, Lemma 2.3], it follows that g is a best approximation for f from N.
On the other hand, Ilf - 0Il = Ilfll = 1 so 0 is another best approximation
for f from N, and since f(xJ = ( -1 r for each 1= 1, 2, ..., n + 1, it follows
that f - 0 equioscillates at (n + 1) points.

3.3. THEOREM. Let Q be a locally compact totally ordered space that
contains at least (n + 1) points, and let N be an n-dimensional weak
Chebyshev subspace of Co(Q). Then N has the property awc I if and only if
it has the property awc2'

Proof It follows from Theorem 3.1 and Lemma 3.2.

3.4. THEOREM. Let Q be a locally compact totally ordered spoace, and let
N be an n-dimensional subspace of Co(Q). If N is a weak Chebyshev
subspace and has the property awc l , then the metric projection P N has a
continuous selection.

Proof It follows from Theorem 1.1 and Theorem 3.3.

In the case when N is a finite dimensional Z-subspace of C[a, b], where
[a, bJ is a compact real interval, Nurnberger [7] showed that the
existence of a continuous selection for PN is equivalent to the fact that N
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is a weak Chebyshev subspace and has the property awc l . However, in
general this is not true. The following example shows that if Q=
[-2,-1]u[1,2], then for each n~l, there is an n-dimensional
Z-subspace N of C(Q) such that N is not a weak Chebyshev subspace, and
the metric projection P N has a continuous selection.

3.5. EXAMPLE. Let Q = [ - 2, -1] u [1,2] and, for each n ~ 1, let N be
the n-dimensional subspace of C( Q) generated by the polynomials
{x, x 2

, ••• , x n
}. Then each g;60 in N has at most (n-1) zeros in Q, so N

is a Chebyshev subspace of C(Q). Thus by Haar's theorem (see Singer [10,
Theorem 2.2, p. 215]), for each f E C(Q), the set PN(f) is a singleton. But
then it is well known and easy to show that PN: C(Q) -+ N is continuous.
On the other hand, if g i (x) = Xi for each 1~ i ~ n, then one can find Xl <
x 2 < ... < X n and Yl < Y2 < ... < Yn in Q such that

Thus N is not a weak Chebyshev subspace.

3.6. THEOREM. Let Q be a compact totally ordered space and let N be an
n-dimensional weak Chebyshev Z-subspace of C(Q). Then the metric
projection P N has a continuous selection if and only if N has the property
awcl ·

Proof This follows from Theorem 1.1, Theorem 3.4, and Brown
[1, the corollary of Lemma 2].

In theorem 3.6 the fact that N is a Z-subspace of C(Q) is essential. The
following example shows that when N is not a Z-subspace, then
Theorem 3.6 need not be true.

3.7. EXAMPLE. Let n ~ 2 be given. For each 1~ k ~ n let Ik =
[k-~, k +~] and let Q = UZ= 1 Ik . For each 1~ k ~ n, define gk E C(Q) as
follows:

if XE I k

otherwise.

Let N be the n-dimensional subspace of C(Q) generated by {gl, g2, ..., gn},
then N is not a Z-subspace of C(Q) and does not have the property awcl'
In order to show that N is a weak Chebyshev subspace, it is enough to
note that for each Xl < X 2 < ... < X n in Q, it is always true that
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Furthermore if N k = NI h = {gl h; gEN}, then N k is a one-dimensional
Chebyshev subspace of c(h). It will be shown that the metric projection
PN: C(Q) -> 2N has a continuous selection. Let f E c(Q), and let fk = fl lk'

Then there is a unique real number !Y.k(f) in R such that !Y.k(f) gk is the
best approximation offk from Nk. If gf=LZ~j rLk(f) gb then gfis a best
approximation for f from N.

Define ljJ: C(Q) -> N by ljJ(f) = gf' Then ljJ(f) E P N(f) for each f E C(Q).
Furthermore, if {Ii} is a sequence in C(Q) that converges to fo, then for
each 1~ k ~ n, the sequence {Ii} converges to f2. Since N k is a Chebyshev
subspace, it follows that the sequence {!Y.k(P) gk} converges to !Y.k(f°) gk'
Thus the sequence {ljJ(P)} converges to ljJ(f0). That is, </J is a continuous
selection for PN'

4. AN EXTENSION OF MAIRHUBER'S THEOREM

In this section it will be shown that if Q is a compact totally ordered
space, and C(Q) contains an n-dimensional weak Chebyshev subspace that
has the property aWCj, where n;:' 3, then Q is homeomorphic to a subset
of the real numbers R. This result together with the results of Section 3
shows that if Q is a compact totally ordered space and C(Q) contains an
n-dimensional weak Chebyshev Z-subspace, where n;:' 3, such that the
metric projection PN has a continuous selection, then Q is homeomorphic
to a subset of the real numbers. The case when n = 2 is discussed also, and
an example will be given to show that there is a compact totally ordered
space Q, that is not homeomorphic to any subset of R, such that C(Q)
contains a 2-dimensional weak Chebyshev Z subspace N for which the
metric projection PN has a continuous selection.

This result is similar to Mairhuber's theorem. Mairhuber's theorem
asserts that if Q is a compact Hausdorff space, and C( Q) contains a finite
dimensional Chebyshev subspace of dimension more than one, then Q is
homeomorphic to a subset of a circle (Schoenberg and Yang [9]). Every
proper compact subset of the circle is homeomorphic to a subset of the real
numbers. In this paper only totally ordered spaces are considered, and
since the topology of the circle cannot be defined by a totally ordering
relation, it follows that any compact totally ordered subspace of the circle
must be a proper subspace. Thus Mairhuber's theorem can be restated as
follows.

4.1. THEOREM (Mairhuber's Theorem). Let Q be a compact totaUy
ordered space. If C(Q) contains a finite-dimensional ChebyShev subspace of
dimension not less than two, then Q is homeomorphic to a subset of the real
numbers.
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Schoenberg and Yang [9] proved that if Q is a compact Hausdorff
space with the property that for any nonempty open subset U £; Q, the set
Q\U is homeomorphic to a subset of the circle S 1, then either Q is
homeomorphic to a subset of the circle, or Q is homeomorphic to the
union S 1U {a}, where a is a point outside S 1. This result can be restated
in the case when Q is totally ordered as follows.

4.2. PROPOSITION. Let Q be a compact totally ordered space. If for each
nonempty open subset U £; Q, the set Q\ U is homeomorphic to a subset of
the real numbers, then Q is homeomorphic to a subset of the real numbers.

The proof of the following proposition is elementary.

4.3. PROPOSITION. Let Q be a locally compact Hausdorff space, let N be
an n-dimensional subspace of Co(Q) that has the property awc!> and let A
be any closed subset of Q. If N[ A is of dimension less than n, then A consists
of a finite number of points.

4.4. LEMMA. Let Q be a compact totally ordered space, and let N be a
two-dimensional weak Chebyshev subspace that has the property awc1· If
there is XoE Q such that g(xo) = 0 for each g E N, then Q is homeomorphic
to a subset of the real numbers R.

Proof If Xo is an isolated point of Q, then Q' = Q\ {xo} is compact and
each g f= 0 in the 2-dimensional subspace N' = NI Q' has at most one zero.
By Theorem 4.1, the set Q' is homeomorphic to a subset of the real
numbers. But then Q is also homeomorphic to a subset of the real
numbers. Assume that Xo is a limit point in Q, and let Q1 = {x E Q; x < x o},
Q2= {XEQ;X>Xo}. If Xo is not a limit point for Qr. then Q1 is compact,
so by either Theorem 4.1 or Proposition 4.3, the set Q1 is homeomorphic
to a subset of the real numbers. Thus to prove this lemma, it is enough to
show that {x E Q; x> xo} is homeomorphic to a subset of the real
numbers. The same argument is true if X o is not a limit point for Q2. There
fore the proof will be given only for the following two cases:

Case 1. Xo is a limit point for both Q1 and Q2.
Let U be a nonempty open subset of Q. By Proposition 4.2 it is enough

to show that Q' = Q\U is homeomorphic to a subset of R. If dim NI Q' < 2
or Xo rt Q', then by either Proposition 4.3 or Theorem 4.1, the set Q' is
homeomorphic to a subset of R. Thus one may assume that X o E Q', and
dim NI Q ,=2.

Let qo E U. Then either Xo< qo or Xo> qo. Without loss of generality,
assume that Xo> qo. Then Q' is the union of the two disjoint compact sets
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Qo = {XE Q'; X> qo} and Q~ = {XE Q'; X< qo}. Since xof. Q~, it follows by
either Proposition 4.3 or Theorem 4.1 that Q~ is homeomorphic to a
subset of R. Thus it is enough to show that Qo={XEQ';X>qo} is
homeomorphic to a subset of R.

Since N is a two-dimensional weak Chebyshev subspace of C(Q), it
follows by Theorem 1.5 that the-re is a basis {g j, g2} of N, and e = ±1,
such that g2(qO) = 0, g2(X) ~ 0 for x ~ qo, g2(X)): 0 for X): qo, and for each
x < y in Q, it is always true that

Without loss of generality assume that e = 1. Then since each g i= 0 in N has
at most one zero in Q\ {xo}, it follows that for each x < y in Q\ {xo} it is
always true that

Therefore, since g2(X) > 0 for each x E Qo\ {xo}, it follows that the function
h(x) = (gl(X)/g2(X)) is a continuous, strictly decreasing real-valued func
tion on Qo\{xo}. Furthermore, if Xl and X 2 are two points in Q such that
qo<x j <Xo<X2, then for each xi=xo in the interval [Xj,x2] one always
has

h(xd > h(x) > h(x2).

Thus lim x --> XQ, x < XQ h(x) = a exists and is finite, and lim x --> XQ. x > XQ = b exists
and is finite. Also if qo < x < X o< Y in Q, then

h(x) > a):b > h(y).

Define ljJ: Qo --) R as follows:

{

h(X) - a+ b

t/J(x) = b

h(x)

if x<xo
if x=xo
if X>Xo·

Then t/J is a continuous strictly increasing function from the compact space
Qo onto the Hausdorff space t/J(Qo) £; R. Thus it is a homeomorphism; that
is, Qo is homeomorphic to a subset of R.

Case 2. QI=0 or Q2=0.
Without loss of generality assume that QI = 0; that is, Q = {x E Q;

x): xo}, and Xo is a limit point for Q. Since Q is compact, it follows that
there is qo in Q such that qo): x for each x E Q. If qo is an isolated point
for Q, then it is enough to show that Q\ {qo} is homeomorphic to a subset
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of R. Let U be a nonempty open subset of Q if qo is a limit point, and let
U be a nonempty open subset of Q\ {qo} if qo is an isolated point of Q.
Also let qj # qo be an element in U. As in Case 1, it is enough to show that
the compact set Qo = {x E Q\ U; x < q j} is homeomorphic t6 a subset of R.
If Xo¢. Qo, then there is nothing to prove. Thus one may assume that
XoE Qo. As in Case 1, one can find a basis {gj, gz} for N such that
gj(qd=O, gj(x)~O for X~qlo gz(qo)=O, and gz(x)~O for x~qo. Since
N has the property awc lo it follows that both gj and gz are positive func
tions on Qo\{xo}. Thus, as in Case 1, there exists hE {gJ!gz, gz/gd such
that h is a strictly increasing continuous positive-valued function from
Qo\{xo} into R. Let a=limx~xoh(x). Then O~a<oo, and define
ljJ: Qo -+ R by

if x #xo
if x=xo.

Then, as in Case 1, one can show that ljJ is a homeomorphism from Qo
onto a subset of R.

4.5. LEMMA. Let Q be a compact totally ordered space, and let N be an
n-dimensional weak Chebyshev subspace of C(Q) that has the property awc j .
If n ~ 2 and there is XoE Q such that g(xo) =°for each g EN, then Q is
homeomorphic to a subset of R.

Proof By induction. If n = 2, then by Lemma 4.4, the hypothesis is
true. Assume that the hypothesis is true for n - 1~ 2. It will be shown that
it is true for n.

Let U be a nonempty open subset of Q. By Proposition 4.2, it is enough
to show that Q' = Q\U is homeomorphic to a subset of R. If dim NI Q' < n
or X oE U, then by either Proposition 4.3 or Theorem 4.1, the set Q' is
homeomorphic to a subset of R. Thus one may assume that dim NI Q' = n
and XoEQ'. Let qoEU, Qj={XEQ';X<qo}, and Qz={XEQ';X>qo}.
Then Q' is the union of the two disjoint compact sets Qj and Qz. Without
loss of generality assume that X o E Qz. Therefore, by either Proposition 4.3
or Theorem 4.1, the set Qj is homeomorphic to a subset of R. Thus it is
enough to show that Qz is homeomorphic to a subset of R. If dim NI Q2 < n
then by Proposition 4.3, the set Qz is homeomorphic to a subset of R, so
one may assume that dim NI Q2 = n. Since N is a weak Chebyshev subspace
of C(Q) that has the property awc j , it follows that there is a basis
{go, glo ..., gn-d of Nand e = ±1, such that go(qo) = 1, g;(qo) = 0 for each
i~ 1, and for each qj < qz < ..., qn-j in Qo,



EXTENSION TO MAIRHUBER'S THEOREM 159

and equal to zero if and only if XoE {qj, ... , qn-d. Let N' be the (n-l)
dimensional subspace of C(Qo) generated by the restriction of
{gj, g2' ..., gn-d on Qo, then N' is a weak Chebyshev subspace of c(Qo),
that has the property awc j , and g(xo) = 0 for each g E N '. Thus since the
hypothesis is true for (n - 1), it follows that Qo is homeomorphic to a
subset of R.

4.6. LEMMA. Let Q be a locally compact totally ordered space, let N be
an n-dimensional weak Chebyshev subspace of C( Q) that has the property
awc j , and assume that n;:, 3. If there are Xl < x 2 in Q such that the set
{x I, X 2} is N-totally dependent, then Q is homeomorphic to a subset of R.

Proof If Q is finite then Q is homeomorphic to a subset of R.
Otherwise by Theorem 2.3, either Q= {x E Q; X ~ x I} u {x E Q; x;:, X2} or
Q={XEQ;XI~X~X2}'If Q={xEQ;x~xdu{XEQ;X;:'X2}'then let
Qj={xEQ;x~xd and Q2={XEQ;X;:'X2}' IfQ={xEQ;xI~x~x2},
then let U be any nonempty open subset of Q. By Proposition 4.2 it is
enough to show that Q\ U is homeomorphic to a subset of R. Let qo E U
and let QI = {XE Q\U; x < qo}, Q2 = {XE Q\U; x;:' qo}. Then Q\U is the
union of the two disjoint compact sets Qj and Q2' In both cases it is
enough to show that QI is homeomorphic to a subset of R, and Q2 is
homeomorphic to a subset of R. It will be shown that Q2 is homeomorphic
to a subset of R. The proof of the fact that Q 1 is homeomorphic to a subset
of R is similar. If Q 2 is empty then there is nothing to prove. Otherwise one
can assume that XI ¢ Q2 and X2E Q2' Let {gl' g2'"'' gn} be a basis of N
such that gl(X I)= 1, gi(Xj)=O for each i=2, ..., n, and let N ' be the
(n - 1)-dimensional subspace of N generated by {g2' ... , gn }. Then since N
has the property awc!, it follows that no g # 0 in N' can have more
(n - 1) zeros in Q2' SO if Q2 is not finite, then by Proposition 4.3,
dim NI Q2 = n- 1 ;:, 2. Also since {x I' X2} is N-totaHy dependent, it follows
that g(x2) = 0 for each gEN'I Q2" Thus N'I Q2 is an (n - 1)-dimensional sub
space of C(Q2) that has the property awc l , and g(X2) = 0 for each
gEN'I Q2' Therefore, since n - 1 ;:, 2, it foHows by Lemma 4.5 that it is
enough to show that N ' I Q2 is a weak Chebyshev subspace of C(Q2)' By
Theorem 1.5 it is enough to show that there is <: = ±1 such that for each
Y2 < ... < Yn in Q2, it is always true that

Since N is a weak Chebyshev subspace, then there is e = ±1 such that for
each YI < Y2 < ... < Yn in Q
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Let YI = XI' and choose any Yz < Y3 < .,. < Yn-I in Qz· Since gl(yd = 1
and gj(YI) = 0 for i = 2, ..., n, it follows that

e det[gj(Yj)] 7::Z,j~ z = e det[gj(Yj)] 7:: I,j= I ~ O.

4.7. LEMMA, Let Q be a compact totally ordered space. If C(Q) contains
a three-dimensional weak Chebyshev subspace that has the property awc I'

then Q is homeomorphic to a subset of R.

Proof If each subset of Q that consists of a three points is
N-independent, then no g"# 0 in N can have more than two zeros, so N
is a three-dimensional Chebyshev subspace of C(Q). Therefore, by
Theorem 4.1, the set Q is homeomorphic to a subset of R.

Assume that there is at least one N-dependent subset of Q that consists
of three points. Then there is at least one N-totally dependent nonempty
subset of Q that contains at most three points.

If there is XoE Q such that {xo} is N-totally dependent, then g(xo) = 0
for each g E N. Thus by Lemma 4,5, the set Q is homeomorphic to a subset
of R, and if there are XI <XZ in Q such that {Xl> xz} is N-totally
dependent, then by Lemma 4.6, the set Q is homeomorphic to a subset of
R. Thus one may assume without loss of generality that there is at least one
N-totally dependent subset of Q that contains exactly three points, and
each N-totally dependent subset of Q that contains at most three points
must contain exactly three points. Using Theorem 2.3, one can isolate the
following two cases only:

Case 1. There are XI <X2<X3 in Q such that {XI' X2, X3} is N-totally
dependent, Q= {XE Q; X~XI} U {Xz} U {XE Q; X~X3} and {XE Q; x<xd
"#0, {XEQ;x>x3}"#0·

Let Ql = {XE Q; X~ xd and Q2 = {XE Q; X~ x 3}. Then it is enough to
show that both QI and Qz are homeomorphic to subsets of R. To prove
that QI is homeomorphic to a subset of R, let N'={gEN;g(x3)=0}.
Then N' is a two-dimensional subspace of C(Q) and no g"# 0 in N' can
have more than two zeros in QI' Therefore, by Proposition 4.3 if QI is not
finite then dim N'I QI = 2. It will be shown that no g"# 0 in N' can have
more than one zero in QI' Indeed, if there is g "# 0 in N' and Y I < Yz in QI
such that g(YI) = g(Yz) =0, then {Yl> Yz, x 3} are the zeros of g. Thus the
set {Yl> Yz, X3} is N-dependent, and since each N-totally dependent subset
of Q that contains at most three points must contain three points, it follows
that {YI, Yz, X3} is N-totally dependent. But this contradicts Theorem 2.3
because Xz E {XE Q; Yz < X < X3} and {XE Q; X>X3}"# 0. Therefore N'I Q1

is a two-dimensional Chebyshev subspace of C(Qd. Thus by Theorem 4.1,
the set QI is homeomorphic to a subset of R. In the same way, one can
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show that Q2 is homeomorphic to a subset of R. Therefore, Q is
homeomorphic to a subset of R.

Case 2. There are two subsets A I' A 2 each of which consists of at most
two points of Q, YI < Y2 in Q such that YI > x for each x EAI, Y2 < x for
each x EA 2 and

Furthermore no subset of {x E Q; YI :s;; x:S;; Y2} that consists of at most
three points is N-totally dependent.

In this case either the set Qo={XEQ;YI:S;;X:S;;Y2} is finite or by
Proposition 4.3 dim Nt Qo = 3. If dim NI Qo = 3, then since each subset of Qo
that consists of three points is N-independent, it follows that NI Qo is a
three-dimensional Chebyshev subspace of CWo). By Theorem 4.1, the set
Qo, and therefore the set Q, is homeomorphic to a subset of R.

4.8. THEOREM. Let Q be a compact totally ordered space. If C(Q)
contains a finite-dimensional weak Chebyshev subspace N of dimension at
least three, and N has the property awc l , then Q is homeomorphic to a subset
ofR.

Proof By induction. Let dim N = n. If n = 3 then by Lemma 4.7, the
hypothesis is true. Assume that the hypothesis is true for n - 1~ 3. It will
be shown that it is true for n.

Let N be a n-dimensional weak Chebyshev subspace of C(Q) that has
the property awc l . If each n points of Q are N-independent, then N is a
Chebyshev subspace of C(Q). Therefore by Theorem 4.1, the set Q is
homeomorphic to a subset of R. If N is not Chebyshev subspace of C(Q),
then there are Xl < X 2 < ... < Xk in Q with 1 :s;; k:s;; n such that {Xl' ... , xd
is N-totally dependent. If k = 1, then by Lemma 4.5, the setQ is
homeomorphic to a subset of R; if k = 2, then by Lemma 4.6, the set Q is
homeomorphic to a subset of R. Thus one might assume that k ~ 3 and Q
is not finite. By Theorem 2.3, there is io E {1, 2, ..., k} such that x io is an
isolated point for Q. Let Q!={XEQ;X<Xio } and Q2={XEQ;X>Xio }'

Then QI and Q2 are compact and Q = QI U {x io } U Q2' Therefore to prove
that Q is homeomorphic to a subset of R, it is enough to show that Q! and
Q2 are both homeomorphic to subsets of R. If Q2 is empty or finite, then
it is homeomorphic to a subset of R. Otherwise one might assume that
dim NI Q2 = n. Let N' = {gE N; g(x io ) = O}. Then dim N' = n -1, and since
N has the property awc l , it follows that no g # 0 in N' can have more than
(n - 1) zeros in Q2' Thus Nt Q2 is an (n - 1)-dimensional subspace of C(Q2)
that has the property awc!. It will be shown that NI Q2 is a weak Chebyshev
subspace of C(Q2)' Let {g2' ..., gn} be a basis for N' and let g! EN be such
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that gl(X iO ) = 1. Then {gl' g2' ..., gJ is a basis for N. Since N is a weak
Chebyshev subspace of C(Q), it follows that there is 8 = ±1 such that for
each YI < Y2 < ... < Yn in Q;

8 det[gJYj)]7;':\j= I ~ O.

Let Y2 < 13 < ... < Yn be (n - 1) points of Q2 and let YI = x io • Then

8 det[gi(YJ]7~2,j=2 = 8 det[gi(Yj)]7~ I,j= I ~ O.

Thus Nfl Q2 is an (n - 1)-dimensional weak Chebyshev subspace of C(Q2)
that has the property awc I' Therefore Q2 is homeomorphic to a subset
of R. In the same way one can show that Q I is also homeomorphic to a
subset of R. So Q is homeomorphic to a subset of R.

4.9. THEOREM. Let Q be a compact totally ordered space, and let N be
an n-dimensional weak Chebyshev Z-subspace of C(Q) such that n ~ 3. If the
metric projection PN has a continuous selection, then Q is homeomorphic to
a subset of R.

Proof By Theorem 3.6, N has the property awcl' Therefore by
Theorem 4.8, the set Q is homeomorphic to a subset of R.

Another way of writing Theorem 4.9 is as follows:

4.10. THEOREM. Let Q be a compact totally ordered space that is not
homeomorphic to any subset of R, and let N be an n-dimensional weak
Chebyshev Z-subspace of C(Q). If n ~ 3 then the metric projection P N has no
continuous selection.

Theorems 4.8 and 4.9 need not be true if dim N = 2. The following example
shows that there is a compact totally ordered space Qo that is not
homeomorphic to any subset of R, and such that C(Qo) contains a two
dimensional weak Chebyshev Z-subspace which has the property awc l .

4.11. EXAMPLE. Let Qo be the set ([0, 1] x {O, 1})\{(O, 0), (1, 1)}, and
let,,;; denote the lexicographic ordering on Qo; that is, (a, b)";; (c, d) if and
only if a < c or a = c and b,,;; d. By Brown [2] the totally ordered space Qo
is compact separable, and not homeomorphic to any subset of R.
Furthermore, no x E Qo is an isolated point.

Define gl and g2 on Qo as follows:

gl(X, y) = 1

g2(X, y) = X

for each (x, Y)EQo,

for each (x, y) E Qo.



EXTENSION TO MAIRHUBER'S THEOREM 163

Then {gI' g2} is a subset of C(Qo). Let N be the two-dimensional subspace
of C(Qo) generated by {gl' g2}' Then N is a Z-subspaced of C(Qo) and
each g E N has at most one change of sign. By Theorem 1.5, N is a two
dimensional weak Chebyshev subspace of C(Qo). On the other hand, g # 0
in N has more than one zero in the set {(x, 0); X E (0, 1)} so no g # 0 in N
has more than two zeros in Q. Thus N has the property awe l .
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